网站首页  软件下载  游戏下载  源码下载  词典软件  教程攻略

请输入您要查询的源码:

 

源码 TensorFlow.js v4.22.0
图标
分类 源码下载-软件开发-java源码-TensorFlow.js java源码
语言 简体中文
大小 20.5MB
软件类型 国产软件
发布时间
用户评分 4
备案号
官方网址
软件授权 免费软件
操作系统 JavaScript
厂商
下载
介绍

TensorFlow.js是一个开源的硬件加速JavaScript库,用于训练和部署机器学习模型。

警告:我们最近发布了TensorFlow.js 2.0。如果您一直通过脚本标签使用TensorFlow.js而未指定版本,并且看到一条错误消息,指出未找到任何后端,那么您应该阅读我们的发行说明 以获取有关升级的说明。

在浏览器中开发ML

使用低级JavaScript线性代数库或高级层API,使用灵活直观的API从头开始构建模型。

在Node.js中开发ML

Node.js运行时下,使用相同的TensorFlow.js API执行本机TensorFlow。

运行现有模型

使用TensorFlow.js模型转换器可在浏览器中直接运行预先存在的TensorFlow模型。

重新训练现有模型

使用连接到浏览器的传感器数据或其他客户端数据重新训练现有ML模型。

介绍

该存储库包含结合了多个软件包的逻辑和脚本。

接口:

TensorFlow.js Core,一种用于神经网络和数值计算的灵活的低级API。

TensorFlow.js Layers,一个高级API,实现类似于Keras的功能 。

TensorFlow.js Data,一个简单的API,用于加载和准备类似于tf.data的数据 。

TensorFlow.js Converter,用于将TensorFlow SavedModel导入TensorFlow.js的工具

TensorFlow.js Vis,TensorFlow.js模型的浏览器内可视化

TensorFlow.js AutoML,用于加载和运行由AutoML Edge生成的模型的API集 。

后端/平台:

TensorFlow.js CPU后端,Node.js和浏览器的纯JS后端。

TensorFlow.js WebGL后端,浏览器的WebGL后端。

TensorFlow.js WASM后端,浏览器的WebAssembly后端。

TensorFlow.js WebGPU,浏览器的WebGPU后端。

TensorFlow.js Node,通过TensorFlow C ++适配器的Node.js平台。

TensorFlow.js React Native,通过expo-gl适配器的React Native平台。

如果您关心捆绑包的大小,则可以单独导入那些软件包。

如果您正在寻找对Node.js的支持,请查看TensorFlow.js Node目录。

基准测试

本地基准工具。使用此网页工具可在具有CPU,WebGL或WASM后端的本地设备上收集TensorFlow.js模型和内核的性能相关指标(速度,内存等)。您可以按照本指南对自定义模型进行基准测试。

多设备基准测试工具。使用此工具可以在一组远程设备上收集与性能相关的相同指标。

入门

在您的JavaScript项目中获取TensorFlow.js的主要方法有两种:通过脚本标签 或从NPM安装TensorFlow.js 并使用诸如Parcel, WebPack或Rollup之类的构建工具。

通过脚本标签

将以下代码添加到HTML文件:

<html>
<head> <!-加载TensorFlow.js-> <script src = “” https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js“ > </脚本>
<!-将您的代码放在下面的脚本标签中。您也可以使用外部.js文件->
<script> //注意,这里没有'import'语句。由于上面的脚本标签,'tf'在索引页上//可用。
//定义线性回归模型。
const model = tf 。顺序(); 模型。添加(tf 。层。密集({单位:1 ,inputShape :[ 1 ]}));
//准备要训练的模型:指定损失和优化器。
模型。编译({损失:' meanSquaredError ' ,优化器:' sgd ' });
//生成一些综合数据进行训练。
const xs = tf 。tensor2d ([ 1 ,2 ,3 ,4 ],[ 4 ,1 ]); const ys = tf 。tensor2d ([ 1 ,3 ,5 ,7 ],[ 4 ,1 ]);
//使用数据训练模型。
模型。适合(xs ,ys )。然后(()=> { //使用模型上做一个数据推理点模型以前没有见过://打开浏览器devtools查看输出模型。预测(TF 。tensor2d ([ 5 ],[ 1 ,1 ]))。打印(); }); </ script> </ head>
<body>
</ body> </ html>

在浏览器中打开该HTML文件,代码应运行!

通过NPM

使用yarn 或 npm将TensorFlow.js添加到您的项目中。注意:因为我们使用ES2017语法(例如import),所以此工作流程假设您使用的是现代浏览器或捆绑程序/编译器,将代码转换为旧版浏览器可以理解的内容。查看 示例 ,了解如何使用Parcel构建代码。但是,您可以自由使用自己喜欢的任何构建工具。

从' @ tensorflow / tfjs '导入* 作为 tf ;
//定义线性回归模型。
const model = tf 。顺序();
模型。添加(tf 。层。密集({单位: 1 , inputShape : [ 1 ]}));
//准备要训练的模型:指定损失和优化器。
模型。编译({损失: ' meanSquaredError ' , 优化器: ' sgd ' });
//生成一些综合数据进行训练。
const xs = tf 。tensor2d ([ 1 , 2 , 3 , 4 ], [ 4 , 1 ]);
const ys = tf 。tensor2d ([ 1 , 3 , 5 , 7 ], [ 4 , 1 ]);
//使用数据训练模型。
模型。适合(xs , ys )。然后(() => {
//使用模型上做一个数据推理点模型以前没有见过:模型。预测(TF 。tensor2d ([ 5 ],[ 1 ,1 。]))打印() ; });

核心(4.20.0==>4.21.0)

其他

将monorepo更新到4.21.0。(#8371). 谢谢,@dbcp1。

更新文档中tf.tensor中支持的TypedArray数据类型(#8287)。谢谢,@gaikwadrahul8。

数据(4.20.0==>4.21.0)

其他

将monorepo更新到4.21.0。(#8371). 谢谢,@dbcp1。

图层(4.20.0==>4.21.0)

特征

主题:添加R2Score指标。(#8353) (#8169). 谢谢,@lukonik。

其他

将monorepo更新到4.21.0。(#8371). 谢谢,@dbcp1。

修复更新设备时弃用的iOS夜间设备(#8348)。

转换器(4.20.0==>4.21.0)

Bug修复

引用数据类型枚举的道具以防止名称篡改(#8361)。

其他

更新锁文件分支tfjs_4.21.0_lockfiles锁文件。(#8372). 谢谢,@dbcp1。

将monorepo更新到4.21.0。(#8371). 谢谢,@dbcp1。

更新README.md中tf.keras SavedModel的断开链接(#8313)。谢谢,@gaikwadrahul8。

节点(4.20.0==>4.21.0)

其他

更新锁文件分支tfjs_4.21.0_lockfiles锁文件。(#8372). 谢谢,@dbcp1。

将monorepo更新到4.21.0。(#8371). 谢谢,@dbcp1。

截图
随便看

 

网盟提供免费网站源码下载(asp源码,php源码,.net源码),源码动态,使用教程和源码评测;为站长推介有价值的源码,为开发者宣传源码作品。

 

Copyright © 2002-2024 cnnbu.com All Rights Reserved
更新时间:2025/4/7 15:27:13